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The quality of thermosetting polymer foams (like polyurethane foam, used for example in
automotive industry) mainly depends on the manufacturing process. At a mesoscopic
scale, the foam can be modelled by the expansion of gas bubbles in a polymer matrix with
evolutionary rheological behaviour. The initial bubbles correspond to germs, which are
supposed quasi-homogeneously distributed in the polymer. An elementary foam volume
(∼1 mm3) is phenomenologically modelled by a diphasic medium (polymer and immiscible
gas bubbles). The evolution of each component is governed by equations resulting from
thermodynamics of irreversible processes: the relevant state variables in gas, resulting
from chemical reaction creating carbon dioxide (assimilated then to a perfect gas), are
pressure, temperature and conversion rate of the reaction. The number of gas moles in
each bubble depends on this conversion rate. The foam is considered as a shear-thinning
viscous fluid, whose rheological parameters evolve with the curing reaction, depending on
the process conditions (temperature, pressure). A mixed finite element method with
multidomain approach is developed to simulate the average growth rate of the foam during
its manufacture and to characterize the influence of the manufacturing conditions (or initial
rheological behaviour of the components) on macroscopic parameters of the foam (cell
size, heterogeneity of porosity, wall thickness).
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
The economic challenges related to industry require a
better knowledge of the phenomena taking a significant
place during the manufacturing processes of polymeric
foams, which are more and more present in automo-
tive and aeronautic applications. For example, flexible
polyurethane (PU) foams are today used in many indus-
trial parts. These PU foams are produced in a one-shot
process, in which polyisocyanate, resin and water are
mixed simultaneously with suitable stabilisers, cata-
lysts and cell-size control agents. The chemical reac-
tions begin immediately in this liquid medium, with
foam rise starting a few seconds after mixing and being
completed in a matter of minutes, producing polyurea
and carbon dioxide [1, 2], with simultaneous expansion
of CO2 bubbles (foaming due to blowing agents) and
polymerization of the mixture. The latter, obtained at
high pressure, is then injected into the mold. After a
first step of germination (CO2 molecules, dissolved in
the mixture, are concentrated in micro-bubbles, due to
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pressure evolution), the bubbles are nourished in gas
by production of CO2 due to a first chemical reac-
tion. A second reaction governs the cure of the matrix
(the walls between the gas bubbles). Both reactions are
exothermic.

Taking into account these phenomena and their con-
sequences is essential to better control the process and
to produce high quality final products. The optimiza-
tion of the manufacturing process, as well as final
product quality, may be improved through numerical
modelling. Two ways can be considered. At a macro-
scopic scale, a phenomenological model has been pro-
posed to describe the evolving rheological properties
of the mixture during the manufacturing process [3–
5]. At a microscopic scale, the interactions between
gas bubbles and liquid walls can be studied (expan-
sion, coalescence). The aim of the numerical model
presented in this paper is to allow the simulation of
the growth and the coalescence of gas bubbles within a
polymer matrix, which simulates in the present case
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the expansion of a foam by chemical reactions. It
gives to the polymer a close or an open cells foam
texture [3], which will be simultaneously stabilised
by the curing reaction, conferring to the foam its fi-
nal characteristics. The present paper briefly presents
the framework of the model (based on the thermody-
namics of irreversible processes of diphasic mediums)
and proposes numerical applications with finite elemen
method.

2. State variables and constitutive equations
At the macroscopic scale, the liquid mixture appears
as a quasi-homogeneous continuous medium. Its rhe-
ological main characteristics are viscoplasticity or vis-
coelasticity [4, 5]. But, at a microscopic scale, the ma-
terial behaviour depends on the interactions between
all reactants, and also on the conditions of moisture,
pressure and temperature during the process [4]. The
bubbles grow in this mixture. The microscopic mate-
rial domain considered in this study corresponds to an
elementary representative volume of foam during its
expansion. We suppose that this volume can be de-
fined and is representative of the macroscopic material
at each step of the manufacturing process. The mi-
croscopic material domain can then be assimilated to
a medium constituted by two phases: the first is the
viscous polymer, whose rheological properties evolve
during the process due to the curing reaction; the sec-
ond is the gas, resulting from a second chemical re-
action, which is randomly distributed in the matrix as
bubbles.

At first approximation, the matrix is considered as
a shear-thinning fluid whose rheological parameters
depend on the degree of curing, denoted β (the vis-
coelastic properties are neglected in this study). The
gas contained in the bubbles will be modelled as a
perfect gas. The number of moles ni in the bubble i
depends on the rate of creation of CO2 present in this
bubble. Denoted αi, it models the chemical reaction
induced by the blowing agents. The two variables αi

and β are supposed to follow evolution laws, function
of time, pressure and temperature. In a first approxi-
mation, the interfacial tension will be neglected in the
model, because it weakly affects the form of the in-
terface, in comparison with the high viscosity of the
matrix. However it would have to be taken into account
in the case of coalescence, i.e. when the film of fluid
separating them becomes very thin.

The conservation equations (mass and momentum)
are written in each phase (matrix and bubbles), as well
as the general principles of thermodynamics [6]. In
order to take into account the interactions between the
various phases, interface laws are considered [7]. If
quasi-static evolutions are supposed, we have:






divσ = 0 in liquid and bubbles

σ = σl = 2η (γ̇ , T, β)ε(v) − pI in the liquid

σ = σi = −pi I with piVi = ni(αi)RT

in the bubble i

interface conditions

(1)

σ is the Cauchy stress tensor, ε(v) the strain rate tensor,
γ̇ = √

ε(v) : ε(v) its equivalent measurement (: is the
scalar product of tensors), p the local pressure in the
liquid, η and p the viscosity and the hydrostatic pressure
of the liquid. pi is the homogeneous pressure in the
bubble i, Vi its volume, R the perfect gas constant and
T the temperature. The interface conditions assume the
continuity of the normal velocity and the normal stress
(the interfacial tension is neglected).

The creation of gas and the curing reactions are gov-
erned by chemical kinetics, whose conversion rate is
supposed to follow an evolution law, as in [1, 5]. Con-
cerning the creation of gas, a Prime law [8] is assumed:

∂αi

∂t
+ v · ∇αi = λgsi (1 − αi )

µg (2)

λg is the characteristic rate of gas creation by surface
unit, depending on the temperature, Si is the surface
of the wall around the bubble i (through which the
dissolved CO2 is diffused) and µg the exponent of this
reaction. The number of moles in each bubble depends
on the conversion rateαi, according to [9]:

ni (αi ) = n0
i (1 + κiαi ) in the bubble i (3)

n0
i is the initial number of moles in the bubble i and κ i

the rate of moles created by the reaction in this bubble
(κ i = (ni

max−ni
0)/ni

0, ni
max being the final number of

moles in the bubble i, after reaction). Note that κ i de-
pends on the bubble, which makes heterogeneous the
bubbles expansion in the fluid. Simultaneously, a sec-
ond chemical reaction leads to the polymerization of
the matrix, such that its viscosity increases up to the gel
point. As for the gas conversion rate, an evolution reac-
tion is considered for the curing rate, which is supposed
to follow a Piloyan law [10]:

∂β

∂t
+ v · ∇β = λpβ

µp (1 − β)vp (4)

λp is the characteristic rate of the cure and µp and νp

two exponents. Taking into account that the reactions
are exothermic, we consider now the heat equations in
the liquid and the bubbles:






ρcṪ = k�T + ẇ in liquid and bubbles
c = cl, k = k1 and ẇ = 2η (γ̇ , T, β)ε(v) :

ε(v) + δH pβ̇ in the liquid

c = cvni , k = ki and ẇ = −pi
V̇i

Vi
+ δHgα̇

in the bubble i

interface thermal conditions

(5)

c is the heat capacity of the material, k is the heat
conductivity, δHg and δHp respectively the enthalpy of
gas creation and of curing of the matrix around the
bubbles. At the interface, heat transfer by conduction
and convection mechanisms is assumed.
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3. Numerical simulation
The system governed by Equations 1–5 is highly cou-
pled and non-linear. Thus, a splitting technique has
been used to decrease the degree of complexity: on one
time step, knowing T, αi and β, velocity and pressure
fields are determined through a mixed finite element
method. The velocity is then used to compute the tem-
perature. Finally, the velocity and the temperature are
used to compute the gas production and the polymer-
ization rate.

Furthermore, we consider that v and p are discontin-
uously interpolated in time. The elements of the Eule-
rian mesh are d-simplexes (triangles in 2D, tetrahedra
in 3D), where d is the spatial dimension. In what con-
cerns spatial discretization, (v, p) have to satisfy stabil-
ity conditions: finite element approximation of the ve-
locity and pressure have to verify the inf-sup condition
[11]. In our approximation, we chose a linear interpo-
lation for velocity and pressure with bubble enrichment
for velocity, the P1+/P1 element, also referred as the
MINI-element [12].

Once the velocity field is established, we have to
determine the temperature. The heat balance equation
is solved using a mixed formulation in temperature and
heat flow. As for the mechanical problem, the finite
element must verify stability conditions [13].

Once the temperature field is established, we have
to calculate the gas rate and the curing rate (as well as
free surface evolution). On the element, the gas rate and
the curing rate are interpolated by functions that are
constant and discontinuous in space, and polynomial
and discontinuous in time.

Finally, in order to calculate the position of the mov-
ing interface between the gas-liquid mixture, the char-
acteristic functions of bubbles are used as additional un-
knowns in each time interval [14] and solved by a finite
element based volume of fluid (V.O.F.) method associ-
ated with a Space-Time Discontinuous Galerkin tech-
nique: Even though the method performs well, numer-
ical diffusion exists and may give incorrect description
of the interface. To limit this diffusion, a r-adaptation
technique is used [15]. This technique is based on the
displacement of mesh nodes without changing the mesh
topology: the mesh follows the motions of the fluid by
contracting the nodes at the interfaces, regaining its
original size once the interface has passed.

The model has been implemented through the
Rem3D R© software (developed by CEMEF) [16].

4. Examples of application
4.1. Case of a single bubble in an infinite

medium
The model is first validated in the case of the expansion
of a single bubble in a quasi-infinite Newtonian fluid,
for which an analytical solution exists for Equations 1
and 2. In this case, the following assumptions are made
[9]:

• the behaviour of the fluid is given by the Newton
law (we note η0 the viscosity) and there is no curing
reaction,

• the characteristic rate of the reaction λg is supposed
constant,

• assuming an adiabatic fluid/bubble interface, the
temperature variations in the bubble are only due
to its expansion (endothermic evolution) and to the
creation of gas (exothermic evolution),

Under these hypotheses, thermomechanical equa-
tions (Equation 5) are weakly coupled because the in-
terfaces are adiabatic and the characteristic rate of the
chemical reaction does not depend on the temperature.
It is possible to find the explicit solution of Equations 1
and 2 by extension of the analysis carried out by Amon
and Denson [7]. Denoting by pext the pressure around
the quasi-infinite domain and p0 the initial pressure in
the bubble, we introduce the following parameters:

µ = 3pext

4η0
and g(t) = n(t)T (t)

n0T0
(6)

A 1D balance equation leads to the bubble volume at
time t:

Vb = V0

[

e−µt + µ
p0

pext

∫ t

0
g (s)e−µ(t−s)ds

]3

(7)

where V0 is the initial volume of the bubble (corre-
sponding to a numerical initial condition). The pres-
sure is independent of the initial radius and of the initial
number of moles present in the bubble. The initial num-
ber of moles, n0, satisfies the perfect gas law (n0 =
p0V0

RT0
). In the case of an isothermal expansion, and as-

suming that µg = 1, the analytic solution can be explic-
itly written as:

Vb = V0

[

1 + κ − κ

1 − 4η0

3p0
λg

(

e−λgt − 4η0

3p0
λge− 3p0

4η0
t
)]3

(8)

The material parameters are given in Tables II at the
reference temperature Tref = 25◦C. The thermal param-
eters correspond to the CO2 gas, but the parameters of
the reaction law have been arbitrarily estimated. We
assume also that p0 = pext = 105 Pa.

The comparison between analytical and numerical
solutions is presented in Fig. 1: a good correlation be-
tween these two results is observed. Discrepancy could
be explain by boundary effects. In the analytical solu-
tion, the radius evolves to a limit value. The evolution
is first slow (for short times), then the curve shows an
inflection point. Afterwards, a small creation of gas
generates a strong increase of the radius. The study
of this analytical solution in function of the material
parameters shows that µ ratio and κ are the main pa-
rameters. µ is homogeneous to a deformation rate and
µ

p0

pext
characterises the mobility of the fluid around the

bubble. It represents the opposition between the pres-
sure forces in the bubble and the viscosity forces in
the liquid. The pressure is independent of the initial
radius and of the initial number of moles present in the
bubble. Fig. 2 shows the evolution of pressure in the
bubble with time. The pressure first evolves strongly
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T AB L E I Material parameters and variables used in the study

Variables and parameters Name Parameters Name

Velocity field v Perfect gas constant R
Cauchy stress tensor σ Density ρ

Hydrostatic pressure p Viscosity η

Strain rate tensor ε(v) Characteristic time of gas rate reaction λg

Equivalent rate of deformations γ̇ Exponent of gas rate reaction µg

Temperature T Initial number of moles in one bubble n0

Conversion rate of gas creation α Rate of moles created in one bubble κ

Conversion rate of polymerisation β Characteristic time of polymerisation reaction λp

Volume of one bubble V First exponent of polymerisation reaction µp

Surface of one bubble S Second exponent of polymerisation reaction υp

Number of gas moles in one bubble n Heat capacity c
Time t Heat conductivity k
Dissipated power ẇ Enthalpy of gas creation δHg

Reference temperature for Arrhenius law Tref Enthalpy of polymerisation δHp

Activation energy E Atmospheric pressure pext

Exponent of Carreau law m Gel point βgel

Characteristic time of Carreau Law a Gel exponent ng

Identity tensor in R3 I Indices: Relative to the liquid phase l
Gradient ∇ Relative to the ith bubble i i
Laplacien � Initial value 0

in the bubble, whereas the radius evolves slowly (see
Fig. 1). After a maximum (at t ≈ 1 s), the pressure in the
bubble decreases to the atmospheric pressure, whereas
its radius continues to increase. It can be explained by
the behaviour of the fluid near the interface during the
expansion: larger is the viscosity of the fluid, slower
is the expansion. The maximum of the pressure curve
corresponds to the equilibrium between the pressure
in the bubble and the efforts of cohesion in the liquid.
When this equilibrium is passed, the viscosity of the
liquid is no more sufficient to limit the expansion of
the bubble. Above t ≈ 15 s, it can be considered that
the expansion occurs with a constant pressure.

4.2. 3D Simulation of the foam expansion
This simulation deals with the expansion of a repre-
sentative volume of foam of 1 mm3, in which a dis-
tribution of 8, 27, 64 or 125 small bubbles are ran-
domly embedded. These dimensions have been chosen
such that, after expansion, the expanded volume (the
numeric “foam”) contains a number of cells in good
agreement with the real observations, with a realistic
size of the cells [17]. Considering that this volume is
representative of the centre of the foam (far from the
skin), a constant pressure is imposed on its 6 faces (this
condition is characteristic of a quasi-homogeneous and
isotropic expansion) and an adiabatic hypothesis is as-

T AB L E I I Values of the material parameters of the gas and Newton
fluid

Parameter Name Value

Viscosity of the liquid η0 (MPa.s) 1 × 10−3

Heat capacity ρcv (J K−1 · m−3) 1.3 × 103

Heat conductivity ki (W K−1 m−1) 2.63 × 10−2

Conversion rate λg (s−1 m−2) 1.39 × 10−2

Reaction exponent µg 1
Enthalpy of gas creation δHg (J mol−1) 1 × 10−4

Rate of moles created in the bubble κ 10

Figure 1 Evolution of the radius of a single bubble in a quasi-infinite
medium during the expansion as function of time: comparison between
the analytical solution and the finite element simulation.

Figure 2 Evolution of the pressure in the bubble as function of time
during the expansion.

sumed on them (the temperature is quasi-homogeneous
in the centre of the foam). These hypotheses would not
be realistic near the skin.

Initially, the pressure in the bubbles is equal to at-
mospheric pressure, which implies that the number of

5878



MECHANICAL BEHAVIOR OF CELLULAR SOLIDS

Figure 3 Evolution of foam microstructure in a cube (initial dimension 1 mm3) for 64 bubbles with a random initial radius distribution, after fixed
times of reaction (a) t = 0 s, initial germs, (b) t = 10 s, beginning of expansion, (c) t = 60 s, after coalescence.

moles they initially contain is different. Even if the
chemical conversion rate is independent of the initial
number of moles, this random initial distribution is suf-
ficient to account for the heterogeneous and anisotropic
final distribution of the bubbles. The matrix is assimi-
lated to a shear-thinning fluid, whose behaviour is ex-
pressed by a Carreau-Arrhenius law:

η(γ̇ , T ) = η0(Tref)e
E
R

(
1
T − 1

Tref

)

×(
1 + (

a(Tref)e
E
R

(
1
T − 1

Tref

)
)2

γ̇ 2
) m−1

2 (9)

E is the activation energy, a is a characteristic time
and m the power-law exponent. The curing reaction
affects the viscosity of the fluid by a function fg, which
follows the model developed by Castro and Macosko
[18]:

η(γ̇ , T, β) = η(γ̇ , T ) fg(β)

where fg (β) =
(

βgel − β

βgel

)−ng

(10)

βgel is the gel point and ng a constant. The values of
these new material parameters are given in Table III
and are based on the results of Dimier et al. [19].
The parameters of the gas bubbles are the same as in
Section 3.1.

T AB L E I I I Values of the material parameters of the reactive system

Parameter Name Value

Initial viscosity of the liquid η0 (MPa.s) 1 · 10−3

Density ρ (kg.m−3) 1 · 103

Characteristic time of Carreau Law a (s) 2
Power-law index m 0.25
Activation energy E (J.mol−1) 7.2 · 103

Gel point βgel (%) 95
Gel exponent ng 1.6
Curing rate λp (s−1.m−2) 1.39 · 10−2

First reaction exponent µp 0.3
Second reaction exponent vp 1.6

Fig. 3 presents, after fixed times of reaction, the po-
sition of the interfaces between fluid and gas bubbles,
from an initial volume of liquid (1 mm3) (Fig. 3a)
to an expanded textured volume (Fig. 3c). During the
bubbles expansion, the global volume of the mixture
increases of about 360%. The growth and the coales-
cence of the bubbles are visible in Fig. 3c near the gel
point (β ≈ βgel).

The coalescence of the bubbles is heterogeneous and
anisotropic. Fig. 4 shows the evolution of the volu-
mic cell size distribution (defined as the product of the
number of bubbles of a given size by their size divided
by the total gas volume) in function of the radius. The
main results are:

• at the beginning of the expansion, the growth of
the smaller bubbles population is the fastest since
the number of the greatest bubbles decreases. This
corresponds to the increase of pressure up to its
maximal value, due to the creation of gas moles,
which favours the smallest bubbles (0 < t < 40 s),

• later, the density of smaller bubbles decreases (<
10%, 40 < t < 60 s). This phenomenon is related
to two effects: when the pressure remains constant
during the expansion, it exists a critical radius, de-
pending on the Si/Vi ratio for each bubble, below
which the expansion slows down (see Equations 7–
8). Moreover, if two bubbles of small size coa-
lesce, they disappear in the population of smallest

Figure 4 Evolution of the cell size distribution during the expansion
(125 bubbles).
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bubbles, so that the number of bubbles increases in
the other populations. The greatest bubbles expand
gradually due to a more important exchange sur-
face Si (Equation 2), leading to the development of
two distributions of “middle” and “large” bubbles
(60 s < t < 80 s),

• finally, the “largest” bubbles continue to grow fast
since the growth of the “middle size” bubbles be-
comes slower (80 < t < 100 s).

This type of expansion leads to a bimodal cell foam,
in which small bubbles are trapped between larger ones.

According to these results and to the influence of the
heterogeneity of bubbles in the mixture, the gas rate is
plotted as function of time, for different initial numbers
of bubbles (respectively 1, 8, 27, 64 and 125 bubbles).
The results show that the gas rate is a variable that is
not sufficient to describe the topological evolution of
the foam (Fig. 5a). We have to introduce a new param-
eter, the number of bubbles by unit of volume in the
mixture, N. This topological parameter can constitute
a new variable in the model, whose evolution has to be
correlated to that of the gas rate, taking into account
the coalescence of the bubbles (Fig. 5b). The porosity
of the foam is calculated as the ratio of the total volume
of gas by the volume of the material domain.

At the difference of the radius evolution shown in
Fig. 1 in the case of a single bubble in a non-reactive
medium, the evolution of the viscosity of the matrix
limits the expansion of the bubbles. The relative vis-
cosity η(t)/η0 tends to infinity as the polymerization

Figure 5 Characterisation of the importance of the number of bubbles
per volume unit during the expansion: (a) evolution of the gas rate, (b)
evolution of the number of bubbles by coalescence.

Figure 6 Evolution of the polymer properties due to the curing reac-
tion during the expansion; (a) evolution of the relative viscosity fg, (b)
evolution of the solid polymer fraction.

rate tends to the gel point (Fig. 6a and b). At the same
time, the velocity of the mixture (the velocity of the
liquid in the thin walls around the bubbles) tends to
zero.

5. Conclusion
A model describing the expansion of flexible foams
during the manufacturing process has been proposed,
considering the evolutions of the interface between ma-
trix and gas bubbles at the microscopic scale. Two
mechanisms have been taken into account for this evo-
lution: the difference of pressure between the gas and
the liquid due to creation of gas in the mixture, and
the curing of the matrix. The germination step of the
bubbles in the mixture has been described, in a first ap-
proximation, by an initial distribution of small bubbles
in the mixture. Finally, a phenomenological equation
has been proposed to describe the evolutionary rhe-
ological properties of the fluid during the cure. The
computational domain is discretized in space-time fi-
nite elements. Flow equations are solved using mixed
finite elements, whereas free surface and gas rate are
determined using a finite element based V.O.F. method
associated with a Space-Time Discontinuous Galerkin
technique. Numerical implementation has been vali-
dated on a simple test: the expansion of a single bubble
in a quasi-infinite medium. The same methodology has
been then used to characterize the microstructure of
a foam during the manufacturing process. According
to the numerical results, some considerations on the
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topology and the evolution of rheological properties
have been done.

Main perspectives arising from this work concern the
comparison with real observations during the process.
On the other hand, the numerical modelling should
taken into account the diffusion and germination mech-
anisms, in order to predict the phenomena appearing
close to the external surface of the foam (skin effects
due to cooling, percolation mechanisms [20]).
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